# Tensors, Einstein Summation Notation

### Akash Garg

Version 1.1 - February 12, 2023

#### 1 - Tensors

- A generalization of scalars (rank-0 tensors) and vectors (rank-1 tensors)
- A linear map from the space of rank-n tensors to the space of rank-m tensors is represented as a rank (m+n) tensor. For example: a linear operator that maps vectors to vectors is represented by a rank-2 tensor (a matrix).
- Coordinates. Scalars, vectors, and tensors exist independently of coordinates. However, given a choice of coordinate axes, they can be represented in those coordinates.

Let  $\vec{u} = (u_1, u_2, u_3)$  and  $\vec{v} = (v_1, v_2, v_3)$ 

Let A be a linear map from vectors to vectors, and suppose that  $\vec{u} = A(\vec{v})$ , i.e.,

$$u_1 = a_{11}v_1 + a_{12}v_2 + a_{13}v_3u_2 = a_{21}v_1 + a_{22}v_2 + a_{23}v_3u_3 = a_{31}v_1 + a_{32}v_2 + a_{33}v_3$$

where,  $a_{ij}$   $(i, j \in \{1, 2, 3\})$  encodes any linear map between vectors in  $\Re^3$  to vectors in  $\Re^3$ 

Therefore given a choice of coordinate frame,

A can be represented by the matrix

| ( | $a_{11}$ | $a_{12}$ | $a_{13}$ |   |
|---|----------|----------|----------|---|
|   | $a_{21}$ | $a_{22}$ | $a_{23}$ |   |
|   | $a_{31}$ | $a_{32}$ | $a_{33}$ | Ϊ |

**N.B.** The matrix  $a_{ij}$  depends on the coordinate frame, but A is independent of the coordinate frame.

#### 2 - Einstein Summation Notation

• Think of k-dimensional arrays of numbers:

$$k = 0 \qquad [a] \\ k = 1 \qquad [a_1, a_2, \dots, a_n] \\ k = 2 \qquad \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{23} \\ \vdots & & \ddots & \\ a_{m1} & & & a_{mn} \end{pmatrix} \\ \vdots \qquad \dots$$



- Consider summations, e.g.,  $\sum_i a_i b_i$  and rewrite as:  $a_i b_i$ , omitting the summation sign, easy!
- Rule: if an index appears twice on the same side of the equal sign, sum over range of index. Examples:

$$\begin{split} \vec{a} \cdot \vec{b} &= & a_i b_i \\ ||\vec{a}||^2 &= & a_i a_i \\ \vec{a} &= \vec{b} \Rightarrow & a_i = b_i (\text{no summation}) \\ \vec{u} &= A \vec{v} \Rightarrow & u_i = a_{ij} b_{ij} (\text{sum over j, but not i}) \\ A &= B C \Rightarrow & a_{ik} = b_{ij} c_{jk} (\text{matrix} - \text{matrix multiplication}) \end{split}$$

Two important tensors:

• The Kronecker Delta:  $\delta$  :

$$\delta_{ij} = \begin{cases} 0 & i \neq j \\ 1 & i = j \end{cases}$$

The matrix representation is the familiar I matrix.

E.g., Trace of a rank-2 tensor:  $Tr(A) = a_{ij}\delta_{ij}$ 

• Permutation Symbol/Permutation Tensor

| 1                          | 1  | the arguments are an even permutation of $1,2,3$  |
|----------------------------|----|---------------------------------------------------|
| $\epsilon_{ijk} = \langle$ | -1 | the arguments are an odd permutation of $1, 2, 3$ |
|                            | 0  | two or more arguments are the same                |

Example:  $\epsilon_{123} = 1$ ,  $\epsilon_{132} = -1$ ,  $\epsilon_{122} = 0$ .

Note:  $\epsilon_{ijk} = -\epsilon_{ikj}$ 

The permutation tensor can be used to define the vector cross product.

## Revision Date Description

| 1.0 | January 1, 2014   | Creation     |
|-----|-------------------|--------------|
| 1.1 | February 12, 2023 | Reformatting |