
Where does 1√
d

come from

Akash Garg

Version 2.0 - April 12, 2023

Among the many surprising things about optimizing neural networks, especially large/deep neural networks
is the sensitivity to initialization. Having done a fair bit of computational science work in the past, I under-
stand the need for good initializations. Most nonlinear optimization routines are sensitive to the quality of
initialization to get to the ”correct” solution – mostly b/c most optimizers will locally linearize a nonlinear
function; thus the closer you are to the solution the faster and more accurately you’ll converge to the desired
solution [3].

In neural network initialization, we linearize the problem using gradient descent and also run into problems
with maintaining neuron activations to ensure that magnitude of the gradients is greater than zero. If gradients
vanish to zero, no progress is made in the optimization/learning.

Common practice dictates that weights shouldn’t be initialized to zero. This is mostly to avoid symmetry
in the gradient propagation. Small random perturbations around zero is also not great and can lead to slow
learning since gradients will be proportional to the weight values; which can be problematic for deep net-
works.

An interesting finding by Glorot and Bengio [1] is that in a simple initialization of weights based on 1√
nin+

√
nout

results in deeper layers not saturating close to zero. The analysis is based on a linear deep neural network
where we want the variances of the inputs to match variance of the weights. This is easier to see for a single
linear layer. Consider a single layer like:

s = zW + b

Then we would like to keep the same variance in the activations, like so:

V ar[s] =
∑
i

V ar[ziwi + bi]

=
∑
i

V ar[ziwi]

=
∑
i

E[wi]
2V ar[z] + E[z2] V ar[wi] + V ar[wi]V ar[zi]

=
∑
i

V ar[zi]V ar[wi]

= nV ar[z]V ar[w]

where V ar[z] and V ar[w] are the shared scalar variances for all weights in the layer. We can also assume
that E[z] = E[w] = 0. Since we would want the variances to match, we want to satisy V ar[s] = V ar[z],

1 of 3

https://twitter.com/akashkgarg
https://linkedin.com/in/akashkgarg
https://mastodon.gamedev.place/@akashkgarg

which can be satisfied when V ar[w] = 1
n . This is achieved by scaling the values for w = 1√

n
, resulting in

V ar[1√
n
w] = 1

nw] where n is dimensions in w and using the property that V ar[aX] = a2V ar[X].

However, this analysis ignores the ReLU activation function that is mostly used in training neural networks
today. A similar analysis was followed up by Kaiming He, et. al. [2] but taking into account the ReLU
activation function for very deep networks:

V ar[sl] = nlV ar[wlzl]

= nlV ar[wl]E[z2l]

Note that E[z2] 6= V ar[z] when we use ReLU since x = max(0, x) does not have zero mean.

Assuming wl−1 is symmetric around zero and bl−1 = 0, then the preactived layer sl−1 = wl−1zl−1 + bl−1
will also be symmetric around zero assuming zl−1 is also symmetric around zero.

Applying ReLU will set all negative values for sl−1 which breaks the symmetry in the post activation output.
For sl−1 ReLU will only keep half the values (positive side) and sets the other half (negative side) to zero.
The symmetry around zero implies that half the values are positive and half the values are negative. This
truncation will modify the variance like so:

E[z2l] =
1

2
V ar[sl−1]

where,
zl = max(0, sl−1).

ReLU effectively eliminates the negative half, halving the variance because the expectation integrates only
over the positive values (which cover half the original distribution).

Plugging this back into the above we get

V ar[sl] =
1

2
nlV ar[wl]V ar[sl−1].

Recursively, with L layers, we get:

V ar[sL] = V ar[s1]

L∏
l=2

1

2
nlV ar[wl].

Using this Kaiming initialization takes this result and sets

1

2
nlV ar[wl] = 1.

as a sufficient condition to avoid reducing or magnifying the magnitudes of input signals exponentially. We
can then solve for V ar[wl] =

2
nl

, which then implies that wl should be scaled by 2√
nl

.

One wouldn’t think that this subtle difference in initialization would make a difference but He et al.show that
the Xavier initialization stalls during training of large networks while Kaiming initialization does converge
even very deep models and is the common practice in weight initialization today.

2 of 3

https://twitter.com/akashkgarg
https://linkedin.com/in/akashkgarg
https://mastodon.gamedev.place/@akashkgarg

There is one more place where this kind of initialization is seen, namely in Transformers. The attention layers
are scaled by 1√

dk
where dk is the dimension of the query and keys:

Attention = softmax(
QKT

√
dk

)V.

This scaling is again used here to avoid large magnitude vectors which will then cause softmax to peak.
Larger dimension vectors mean that there are more terms in the dot product, which increases the variance of
the logits. The scaling here will again attempt to normalize the effect of large variances similar to Xavier /
Kaiming initialization.

References

[1] Xavier Glorot and Yoshua Bengio. “Understanding the difficulty of training deep feedforward neu-
ral networks”. In: Proceedings of the thirteenth international conference on artificial intelligence and
statistics. JMLR Workshop and Conference Proceedings. 2010, pp. 249–256.

[2] Kaiming He et al. “Delving deep into rectifiers: Surpassing human-level performance on imagenet clas-
sification”. In: Proceedings of the IEEE international conference on computer vision. 2015, pp. 1026–
1034.

[3] Newton Fractal. URL: https://en.wikipedia.org/wiki/Newton_fractal.

Revision Date Description

1.0 December 7, 2020 Initial draft
2.0 April 12, 2023 Adding bit about transformers

3 of 3

https://en.wikipedia.org/wiki/Newton_fractal
https://twitter.com/akashkgarg
https://linkedin.com/in/akashkgarg
https://mastodon.gamedev.place/@akashkgarg

