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One needs a loss function. For classification problems, cross-entropy is a popular choice, but why not
mean-squared error (MSE) To answer this we need to consider where MSE comes from. To understand
MSE we need to understand some basic concepts from bayesian inference.

Suppose we have our model such that F(x ,θ ) 7→ y where x are the inputs, y outputs and θ are the model
parameters. Furthermore, let D = (xn, yn) are the observations / data that is drawn from an unknown
probability distribution p(D). Our goal is to approximate p(D) through a q(D|θ ). Reall that one way to
compare two distributions is by using KL-Divergence:

DKL(p(D)∥q(D|θ )) =
∑

D

p(D) log
�

p(D)
q(D|θ )

�

We want to minimize the divergence between p and q. Since p(D) does not depend on the model
parameters θ we can safely ignore those terms and we are left with:

argmaxθq(D|θ ).

We have observations x i , outputs yi and the predictions from our model F(x ,θ ) = ŷi . Note that we have
some unknown error between our observations y and our predictions ŷ s.t.

yi = ŷi + ε.

If we assume that the error ε has a normal distribution around the mean with variance σ then we can
have:

p(y|x) =N (y; ŷ ,σ2).

Using our formulation to minimize KL divergence and the product rule of conditional probability, we get:

L(y|x) = argmaxθ
∏

n

p(yn|xn,θ ) = argmaxθ
∏

n

1
2σ2π

exp

�

−
(yn − ŷn)2

2σ2

�

.

Where L is our "loss" function. All we have done here is subsitute the gaussian for p(y|x). We can then
take the log of both sides to simplify further:
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log L(y|x) = log
∏

n
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�

=
∑
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�

−
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2σ2

�

Since we want to maximize L we can ignore the constant terms and assume that σ = 1 since it won’t
affect the function extrema. Thus we get:

argmaxL(y|x) = argmax ŷ −
1

2n

∑

(yn − ŷn)
2 = argmin ŷ

1
2

∑

(yn − ŷn)
2. (1)

where we changed the argmax into an argmin and removed the minus sign. We now have our MSE
equation.

The salient point here is that we got here by assuming a normal distribution on the prediction. However,
for classification problems the true distribution is not normal, but closer to a Binomial distribution with
values of 1 or 0. There is a proof of this that leads to the binary cross entropy term by Rafay Khan [Kha19].

The second reason for not using MSE for classification problems is that when combined with the sigmoid
activation (which seems common practice), we do not get a convex function. One can see this by evaluating
the second derivative of MSE with sigmoid activation and note that it is not positive everywhere. A proof
is given here [Bha19].
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