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Abstract. Previous papers have introduced discrete bending energies for thin

shell and cloth simulations. In this report the corresponding bending forces and

their gradients are derived. The derivation only requires basic trigonometry and

repeated use of the chain rule for differentiation. By observing all the symmetries

in the derivation it is shown that the evaluation of the bending forces and gradients

can be sped up 3× compared to a naive implementation.

1. Notation

x Position in deformed configuration
x̄ Position in undeformed configuration
W Energy per element
A Triangle area
l Edge length
s Edge strain
θ Bend angle
e Edge vector
n Normal vector
t In-plane edge normal
f Force vector
H Energy Hessian or mean curvature (average of principal curvatures)
HΣ Sum of principal curvatures
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a Scalar Lower case, latin
x Vector Lower case, bold, latin
x̂ Normalized vector Hat over vector
x̄ Undeformed vector (material space) Bar over vector
ẋ Time derivative of vector Dot over vector
M Matrix (second order tensor) Upper case, latin

2. Discrete shells

The bending energy for a smooth thin shell can be written as a function of
the change in mean curvature squared. In [Grinspun et al. 03] it is shown
how this can be discretized and expressed in terms of the dihedral angle
between adjacent triangles in a mesh. We shall use the resulting expression
as the foundation for our derivations here. In particular, we use the following
bending energy :

Eb(x) = kb
3‖ē0‖2
Ā

(θ − θ̄)2 (1)

In this equation kb is the bend stiffness, e0 is the edge along a hinge, θ is the
bend angle for the hinge, and θ̄ denotes the same angle in the undeformed
configuration. The bend angle is the angle between the normals of the two
triangles incident to the hinge which is the same as the complement of the
dihedral angle for the hinge. The bend angle is zero for a flat material.

In the following sections we let x = (xT0 ,x
T
1 ,x

T
2 ,x

T
3 )T be the four vertices

of the two triangles stacked together into a single vector. This is all illustrated
in figure 1 and 2 which are similar to those in the appendix of [Wardetzky
et al. 07]. One of the modifications that should be noted is that we follow the
original notation from [Bridson et al. 03] and [Grinspun et al. 03] and use θ
to denote the bend angle whereas [Wardetzky et al. 07] uses θ to denote the
dihedral angle.
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Figure 1. Vertices, edges, normals and angles around the edge shared by two tri-
angles.
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Figure 2. Inplane edge normals and the associated altitudes from one edge to the
opposing vertex.

The derivation of the above energy contains a couple of subtle details which
we shall briefly clarify. First, it should be noted that mean curvature is
sometimes defined as the sum of the principal curvatures and sometimes as
the average of the principal curvatures. We will use HΣ to denote the sum
and simply H to denote the average.

With this notation, we note that the appendix of [Grinspun et al. 03] refers
to a result by [Cohen-Steiner and Morvan 03] to assert that :∫

T
H̄ΣdĀ = θ̄‖ē0‖ (2)

where and T is the diamond region associated with a hinge. By “a similar
argument” they state that :∫

T
∆HΣdĀ = (θ − θ̄)‖ē0‖

What is important to note here, is that [Cohen-Steiner and Morvan 03] uses
HΣ as their mean curvature. When averaged across the two triangles this
gives an approximation for the pointwise difference in HΣ. If Ā = Ā1 + Ā2

is the area of the two triangles incident to the hinge in the rest configuration
then the area associated with the hinge is a third of that, so the estimate for
the pointwise difference becomes :

∆HΣ ≈
3

Ā

∫
∆HΣdĀ = 3(θ − θ̄)‖ē0‖/Ā

In [Grinspun et al. 03] it is in effect argued that for sufficiently small tri-
angles, the mean curvature difference can be assumed to be constant across
the triangle. As a consequence it follows that the average of the square of the
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difference is the same as the square of the average difference. I.e.(∫
∆HΣdA

)2

≈
∫

(∆HΣ)2dA

This is obviously only true for infinitely small triangles (i.e. pointwise), while
it becomes an approximation for finite size triangles. However, assuming that
this approximation is valid, we get the following pointwise estimate :

(∆HΣ)2 = 9(θ − θ̄)2‖ē0‖2/Ā2. (3)

When integrated across the support region of the hinge (of area Ā/3), this
gives a contribution to the energy of∫

(∆HΣ)2dĀ = 3(θ − θ̄)2‖ē0‖2/Ā. (4)

In the main body of [Grinspun et al. 03] this expression is used as a discretiza-
tion of ∫

(∆HΣ)2dĀ =

∫
Ω̄

(HΣ ◦ φ− H̄Σ)2dĀ =

∫
Ω̄

4(H ◦ φ− H̄)2dĀ

where φ is the deformation function. Note that although the paper only ever
uses H to denote mean curvature, it is using it to refer to the average of the
principal curvatures in the main body, but the sum of the principal curvatures
in the appendix.

As a simple test for an implementation, one might consider computing the
integrated mean curvature over a sphere. For a sphere we have H = −1/r
where r is the radius and thus HΣ = −2/r. Assuming a flat rest configuration
it follows that (∆HΣ)2 = 4/r2, and since the area of a sphere is 4πr2 we get :∫

(∆HΣ)2dĀ = 16π

Since the resulting energy is constant (and independent of radius) it also
follows that there should be no net force. Both of these facts can be checked
in an implementation.

We may choose to use different formulations for the discrete curvature by
modifying Equation (2). In that case, the discrete energy becomes :

Eb(x) = kb
3‖ē0‖2
Ā

(ϕ(θ)− ϕ(θ̄))2 (5)

where ϕ(·) is a discrete curvature measure corresponding to HΣ. One such
measure that we shall consider is :

ϕ(θ) = 2 tan
(
θ
2

)
(6)
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We generally don’t allow material to go through itself, so we expect that
θ ∈ [−π;π[ and similarly for θ̄. As a consequence θ − θ̄ need not be in
[−π;π[, but may in fact be in any subinterval of [−2π; 2π[ of length 2π. It
is therefore important to note that the energy is based on ϕ(θ)− ϕ(θ̄) rather
than ϕ(θ − θ̄) (this is consistent with [Gingold et al. 04]). If we were to use
ϕ(θ− θ̄) then the energy would contain discontinuities when using the discrete
curvature measure given in Equation (6). Several papers do use ϕ(θ− θ̄), and
for small (infinitesimal) bend-angles all of these methods are equivalent (the
curvature approaches zero as the bend-angles approaches zero). However, for
large (finite) bend-angles the distinction becomes important.

In order to be able to determine which way a shell is bending, the bend-
angle, θ, has to be computed as a signed quantity. If the rest-angle is zero
(i.e., when we consider a thin plate), then the sign doesn’t matter because all
the discrete mean curvature estimates are odd functions such that H(−θ) =
−H(θ). Since the bending energy is a function of the square of the mean
curvature, the actual sign therefore doesn’t matter in this case. However, for
thin shells where the rest-angle is non-zero, the sign must be computed in a
consistent manner. We use the same (arbitrary) convention as in [Bridson
et al. 03] and let θ have the same sign as (n1×n2) · e0 = det[n1,n2, e0]. This
means that θ is positive if the two normals are pointing away from each other,
i.e., if the shape is convex, which is also consistent with [Cohen-Steiner and
Morvan 03].

n1
n2
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n1

-n2 n1+n2

n1-n2

θ/2

^

^

^
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Figure 3. Simple construction to compute the trigonometric functions for θ
2
based

on one of the right angled triangles. Note that each of the hypotenuses have unit
length.

To compute the various trigonometric functions for θ
2 for θ ∈ [0;π] we see
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from figure 3 that :

sin
(
θ
2

)
=
‖n̂1 − n̂2‖

2
(7)

cos
(
θ
2

)
=
‖n̂1 + n̂2‖

2
(8)

tan
(
θ
2

)
=
‖n̂1 − n̂2‖
‖n̂1 + n̂2‖

(9)

For values of θ outside the specified interval the usual identities for trigono-
metric functions can be used, which means that the expressions for sin and
tan simply have to be multiplied by the sign of θ. We note that for θ = 0
the sign function is not well defined, but the numerator for both sin

(
θ
2

)
and

tan
(
θ
2

)
is zero. Hence the sign function can be defined arbitrarily in this

situation as long as it is finite.
In order to determine the proper value for the bending stiffness, kb, we note

that while the expressions here are used for general shells, the model must be
consistent with a plate model given a flat rest state. According to [Audoly
and Pomeau 10, Eq. 6.95b], the bending energy for a plate undergoing small
deformations is :

Eb =
D

2

∫
(∆w)2dA

where D is the flexural rigidity, ∆ is used to denote the Laplace operator and
w is the height field of displacements across the plate. The Laplacian of a
height field, w, gives the first order approximation of the sum of the principal
curvatures, so effectively this states that :

Eb ≈
D

2

∫
(HΣ)2dA

By writing the flexural rigidity in terms of Young’s modulus, Y , Poisson’s
ratio, ν, and the thickness of the plate or shell, h, it follows that :

kb =
D

2
=

Y h3

24(1− ν2)
.

3. Vector gradients

Let x ∈ Rn be a point in the configuration space. For the purposes of the
following, n is typically 12 as it contains the coordinates of the 4 vertices in R3

which make up the stencil of a hinge. Also, let u(x) and v(x) ∈ Rm be vector
valued functions which depend on the configuration. Typically m will be 3
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as we compute normal and edge vectors as functions of the underlying con-
figuration. Vectors are assumed to be column vectors such that the gradient,

∇ =
[
∂
∂x1

, . . . , ∂
∂xn

]
, becomes a row vector.

In the following we will build a library of gradients of functions of vectors
along with some intuition about how to interpret them. First consider the
gradient of ‖x‖2 which is a scalar valued function of x :

∇‖x‖2 = ∇
n∑
i=0

x2
i = 2xT

The gradient of the norm itself then follows by using the chain-rule for a scalar
function

∇‖x‖ = ∇
√
‖x‖2 =

1

2
√
‖x‖2

∇‖x‖2 =
xT

‖x‖ = x̂T

Here we use a hat to denote the normalized vector. The interpretation of this
is simply that the largest change in the norm of x is obtained by moving along
the vector x itself.

Let us now consider the gradient of u(x). Since u is a vector, it follows that
∇u is a matrix where each row is the gradient of the corresponding component
of u. This is also known as the Jacobian, but we will not make the distinction
and simply refer to it as the gradient of u. Using this notation, the chain-rule
for a function, f(u(x)), states that

∇xf = ∇uf∇xu

Similarly for a scalar-valued function, f , the multivariate product rule for
f(x)u(x) can be written as

∇(fu) = f∇u + u∇f

It should be noted that the order in each of the two products is important
since the matrix product is not commutative. By applying the chain-rule we
can now easily extend the result above :

∇‖u‖ = ûT∇u

and it follows that :

∇
(

1

‖u‖

)
=
−1

‖u‖2∇‖u‖ = − ûT∇u

‖u‖2

Based on the product-rule we also see that

∇û = ∇
(

u

‖u‖

)
= u∇

(
1

‖u‖

)
+

1

‖u‖∇u = −u
ûT∇u

‖u‖2 +
∇u

‖u‖



8 Walt Disney Animation Studios Tech Report

After simplification this gives

∇û = (I − ûûT )
∇u

‖u‖

The factor (I − ûûT ) is a projection matrix, which projects away all compo-
nents along û. To see this, notice that (I − ûûT )û = û− û‖û‖2 = û− û = 0.
Intuitively this is not surprising since any change along u will not affect û.
The remaining change (which is orthogonal to u) will affect û more or less
depending on how long u is. A small change at the end of a long vector will
only turn û a little, while the same change at the end of a very short vec-
tor will have a much bigger impact. Hence, the division by ‖u‖ also makes
intuitive sense.

For the dot product of two vectors we have

u(x) · v(x) =

m∑
j=1

uj(x)vj(x)

The i’th component of the gradient therefore becomes

(∇(u · v))i =

m∑
j=1

uj
∂vj
∂xi

+ vj
∂uj
∂xi

= uT (∇v)i + vT (∇u)i

Putting all the components together we get

∇(u · v) = uT∇v + vT∇u

We can interpret this result geometrically based on the fact that u · v =
‖u‖‖v‖ cos θ where θ is the angle between u and v. A change in u · v can
arise in two ways : By changing u and by changing v. This corresponds to
the two terms (the first one accounts for change in v, while the second one
accounts for change in u). If we let the variation δu = ∇uδx be a small
change in u due to a small change δx in x, then we know that δu must be
aligned with u to change ‖u‖, and it must be orthogonal to u in order to
change θ. If the orthogonal component of δu is aligned with v then v · δu
will be positive indicating that cos θ increases which in turn means that θ is
decreasing (since θ ∈ [0, π]). If on the other hand δu and v are opposite, then
θ is increasing. The situation is symmetric for δv.

The cross product is a little more complicated, but can be computed com-
ponentwise just the same way as the dot product. The end result is

∇(u× v) = u×∇v − v ×∇u

The cross product between a vector and a matrix should here be understood
as the cross product between the vector and each of the columns in the matrix.
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Also in order to be able to write δf = ∇fδx the expression ∇fδx should be
treated like a matrix product which is not commutative.

The next step is to consider the gradient of a normalized cross product.
This will come up later as the gradient of a triangle normal. Let n = u× v.
We then have :

δn̂ = ∇n̂δx

=
(
I − n̂n̂T

) ∇n

‖n‖δx

=
(
I − n̂n̂T

) ∇(u× v)

‖u× v‖ δx

=
(
I − n̂n̂T

) u× δv − v × δu
‖u× v‖

Looking at each of the terms in the numerator of the fraction we see that if
δv is parallel to v then u × δv will be parallel to u × v = n which will be
projected away. If δv is parallel to u then u×δv will be zero, so for any δv in
the plane spanned by u and v (i.e., orthogonal to n̂) we get no contribution
to δn̂. A similar argument holds for the second term. Consequently we see
that δu and δv must be orthogonal to the plane spanned by u and v to affect
δn̂; i.e., the change must be parallel to n̂ itself, which makes sense since any
inplane deformation will not change the normal.

Formally, let δu = δu‖+ δu⊥ and δv = δv‖+ δv⊥ be the decomposition of
the variation of u and v into components parallel with n̂ and orthogonal to
n̂. The above expression then simplifies :

δn̂ =
(
I − n̂n̂T

) u× (δv‖ + δv⊥)− v × (δu‖ + δu⊥)

‖n‖

=
u× δv‖ − v × δu‖

‖n‖

=
u× (n̂n̂T δv)− v × (n̂n̂T δu)

‖n‖
If we write the cross products in terms of multiplication with the corre-
sponding skew-symmetric matrix, then the associativity of the matrix product
makes it clear that we can rewrite this as :

δn̂ =
[u]×n̂n̂T∇v − [v]×n̂n̂T∇u

‖n‖ δx

=
(u× n̂)n̂T∇v − (v × n̂)n̂T∇u

‖n‖ δx

It therefore follows that we have :

∇n̂ =
(u× n̂)n̂T∇v − (v × n̂)n̂T∇u

‖n‖ (10)
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4. Gradient and Hessian of the bending energy

In order to compute the bending forces, we need to compute −∇Eb and for
an implicit solver we also need to compute the Jacobian of the bending forces
(i.e., ∇((−∇Eb)T ) = −H(Eb)).

The gradient and the Hessian of the bending energy in Equation (5) can be
expressed in terms of the gradient and the Hessian of the bend angle. Since
all the quantities in front of (ϕ(θ)−ϕ(θ̄))2 refer to the rest configuration, they
are effectively constants for purposes of differentiation, so we get

−∇Eb = −∇
(
kb

3‖ē0‖2
Ā

(ϕ− ϕ̄)2

)
= k(ϕ− ϕ̄)∇ϕ

and

−H(Eb) = ∇(−∇Eb)T

= k∇ ((ϕ− ϕ̄)∇ϕ)
T

= k
(
(ϕ− ϕ̄)H(ϕ) +∇ϕT∇ϕ

)
where

k = −kb
6‖ē0‖2
Ā

, ϕ = ϕ(θ), ϕ̄ = ϕ(θ̄)

For ϕ(θ) = θ as in Equation (1) we simply have ∇ϕ(θ) = ∇θ and H(ϕ(θ)) =
H(θ), and thus

−∇Eb = k(θ − θ̄)∇θ
−H(Eb) = k(θ − θ̄)H(θ) + k∇θT∇θ

As an alternative we might consider the discrete curvature measure given by
Equation (6). For convenience and to make it easier to handle the powers of
2, let

ψ(θ) = tan

(
θ

2n

)
such that ϕ(θ) = 2nψ(θ). Since

∇ψ =

(
1 + tan2 θ

2n

)
1

2n
∇θ = 2−n(1 + ψ2)∇θ

it follows that

∇ϕ = ∇(2nψ) = 2n∇ψ = (1 + ψ2)∇θ
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and therefore

H(ϕ(θ)) = ∇(∇ϕ)T

= ∇((1 + ψ2)∇θ)T

= (1 + ψ2)H(θ) +∇θT∇ψ2

= (1 + ψ2)H(θ) + 2ψ∇θT∇ψ
= (1 + ψ2)H(θ) + 21−nψ(1 + ψ2)∇θT∇θ

Combining all this gives

−∇Eb = k(ϕ− ϕ̄)∇ϕ
= k(ϕ− ϕ̄)(1 + ψ2)∇θ

−H(Eb) = k
(
(ϕ− ϕ̄)H(ϕ) +∇ϕT∇ϕ

)
= k(ϕ− ϕ̄)

(
(1 + ψ2)H(θ) + 21−nψ(1 + ψ2)∇θT∇θ

)
+ k(1 + ψ2)2∇θT∇θ
= k(ϕ− ϕ̄)(1 + ψ2)H(θ)

+ k(1 + ψ2)
(
2(ψ − ψ̄)ψ + (1 + ψ2)

)
∇θT∇θ

If we define

ζ(θ, θ̄) = k(ϕ− ϕ̄)(1 + ψ2) = 2nk(ψ − ψ̄)(1 + ψ2)

ξ(θ, θ̄) = k(1 + ψ2)
(
2(ψ − ψ̄)ψ + (1 + ψ2)

)
then we can write the result compactly as

−∇Eb = ζ(θ, θ̄)∇θ (11)

−H(Eb) = ζ(θ, θ̄)H(θ) + ξ(θ, θ̄)∇θT∇θ (12)

As we can see, the Hessian of the bending energy is a weighted sum of H(θ)
and ∇θT∇θ, and the same weighting function is used in the computation of
the bending force and the Hessian of the bending energy. This was also the
case with the choice of ϕ(θ) = θ, and it provides an opportunity for some
computational savings later on. The weighting functions, ζ(θ, θ̄) and ξ(θ, θ̄)
are functions of the bend angle and therefore associated with the edge in the
middle of the hinge. It should also be noted that the only dependence on
θ̄ is encapsulated in these two functions. Hence in order to evaluate viscous
damping forces as in [Kharevych et al. 06, Bergou et al. 10], you only have
to replace θ̄ in each of these functions with the bend angle from the previ-
ous timestep, θprev. The combined forces and force gradients can then be
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computed by letting :

ζ = ζ(θ, θ̄) + ζ(θ, θprev)

ξ = ξ(θ, θ̄) + ξ(θ, θprev)

5. Gradient of the bend angle

In this section we will focus on how to compute ∇θ. Since we will need it
later on, we start by noticing that e0 = x1 − x0, so it’s easy to see that

∇e0 = [−I, I, 0, 0]

where I and 0 each represent 3×3 block matrices. The gradients of the other
edge vectors have similar expressions.

For the derivation of ∇θ let n̂1 and n̂2 be the unit-length normals of the
two triangles :

n̂1 = ê0 × e3

n̂2 = −ê0 × e4

We then have

n̂1 · n̂2 = cos θ

Since ∇ cos θ = − sin(θ)∇θ it follows that (for θ 6= 0) :

∇θ = −∇(n̂1 · n̂2)

sin θ
(13)

Using the dot product rule we have :

∇(n̂1 · n̂2) = n̂T1∇n̂2 + n̂T2∇n̂1

The expressions for ∇n̂1 and ∇n̂2 follow from Equation (10) :

∇n̂1 =
(e0 × n̂1)n̂T1∇e3 − (e3 × n̂1)n̂T1∇e0

‖n1‖
(14)

∇n̂2 =
−(e0 × n̂2)n̂T2∇e4 + (e4 × n̂2)n̂T2∇e0

‖n2‖
(15)

By using the vector triple product [u,v,w] = (u × v) ·w = w · (u × v) and
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the fact that [u,v,w] = [w,u,v] we can now write :

n̂T1∇n̂2 =
−[n̂1, e0, n̂2]n̂T2∇e4 + [n̂1, e4, n̂2]n̂T2∇e0

‖n2‖

=
[n̂1, n̂2, e0]n̂T2∇e4 − [n̂1, n̂2, e4]n̂T2∇e0

‖n2‖

n̂T2∇n̂1 =
[n̂2, e0, n̂1]n̂T1∇e3 − [n̂2, e3, n̂1]n̂T1∇e0

‖n1‖

=
[n̂1, n̂2, e0]n̂T1∇e3 − [n̂1, n̂2, e3]n̂T1∇e0

‖n1‖

Given that
n̂1 × n̂2 = ê0 sin θ

it follows that

[n̂1, n̂2, e0] = (n̂1 × n̂2) · e0 = (ê0 · e0) sin θ = ‖e0‖ sin θ

For the two remaining volume products we get :

[n̂1, n̂2, e3] = (n̂1 × n̂2) · e3 = (ê0 · e3) sin θ = −‖e3‖ cosα3 sin θ,

[n̂1, n̂2, e4] = (n̂1 × n̂2) · e4 = (ê0 · e4) sin θ = −‖e4‖ cosα4 sin θ

The minus signs here are due to the fact that e3 and e4 are oriented oppositely
of e0. From the results we see that all the volume products have a factor of
sin θ which is going to cancel out with the sin θ in equation 13 (and lift the
singularity at θ = 0). We therefore have

n̂T1∇n̂2

sin θ
=
‖e0‖n̂T2∇e4 + ‖e4‖ cosα4n̂

T
2∇e0

‖n2‖
n̂T2∇n̂1

sin θ
=
‖e0‖n̂T1∇e3 + ‖e3‖ cosα3n̂

T
1∇e0

‖n1‖

or equivalently

n̂T1∇n̂2

sin θ
=
‖e0‖n̂T2∇e4 − (ê0 · e4)n̂T2∇e0

‖n2‖
(16)

n̂T2∇n̂1

sin θ
=
‖e0‖n̂T1∇e3 − (ê0 · e3)n̂T1∇e0

‖n1‖
(17)

In terms of computation the second of these expressions is probably the most
efficient, and we shall use it later to show the connection between the results
in [Grinspun et al. 03] and [Bridson et al. 03].
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From a geometric point of view, a few more simplifications can be made.
The other quantities we need for this are based on different ways of computing
the area of the two triangles :

2A1 = ‖n1‖ =
‖e0‖2

cotα1 + cotα3
= ‖e0‖‖e3‖ sinα3

2A2 = ‖n2‖ =
‖e0‖2

cotα2 + cotα4
= ‖e0‖‖e4‖ sinα4

Applying a combination of these identities to equations 16-17 we get :

n̂T1∇n̂2

sin θ
=

1

‖e0‖
(cotα2 + cotα4)n̂T2∇e4 +

1

‖e0‖
cotα4n̂

T
2∇e0

n̂T2∇n̂1

sin θ
=

1

‖e0‖
(cotα1 + cotα3)n̂T1∇e3 +

1

‖e0‖
cotα3n̂

T
1∇e0

Since

∇e0 = (−I, I, 0, 0)

∇e3 = (0,−I, I, 0)

∇e4 = (0,−I, 0, I)

it then follows easily that :

∇x0θ =
1

‖e0‖
(cotα3n̂

T
1 + cotα4n̂

T
2 )

∇x1θ =
1

‖e0‖
(cotα1n̂

T
1 + cotα2n̂

T
2 )

∇x2θ =
−1

‖e0‖
(cotα1 + cotα3)n̂T1 = −‖e0‖

2A1
n̂T1

∇x3
θ =

−1

‖e0‖
(cotα2 + cotα4)n̂T2 = −‖e0‖

2A2
n̂T2

We see that the gradient wrt. x0 and x1 are similar just as the gradient wrt.
x2 and x3 are similar. This is to be expected due to the symmetry of the
configuration. Furthermore we notice that the gradients wrt. x2 and x3 are
easy to interpret geometrically. In the case of ∇x2

θ, it is aligned with n̂1 since
any motion of x2 in the plane orthogonal to n̂1 will not change θ. To verify
the magnitude of these gradients we note that the areas of the triangles can
also be written in terms of a baseline and an altitude :

2A1 = ‖n1‖ = ‖e0‖h01 = ‖e1‖h1 = ‖e3‖h3

2A2 = ‖n2‖ = ‖e0‖h02 = ‖e2‖h2 = ‖e4‖h4
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Hence we see that

∇x2
θ = − n̂T1

h01

∇x3
θ = − n̂T2

h02

This is in fact what we would expect, since it is easy to see that for a motion,
dx, along n̂1 of x2 we have

dx

h01
= tan(−dθ) = −dθ +O(dθ3)

To first order the scaling factor of ∇x2θ must therefore be −1/h01 which is
exactly what we have. A similar argument holds for the gradient wrt. x3.

At this point it is worthwhile to do a “unit-check”. We know that the
length of one of the sides is measured in meters (when using SI units), a
unit-vector is dimensionless and so is cotan of an angle. It therefore follows
that the unit for the gradient is m−1. If we consider a small displacement δx
(which is measured in meters), it follows that ∇θδx is dimensionless. This is
as expected because θ is dimensionless.

From equation 16 and 17 we can alternatively write these results as follows :

∇x0θ = − ê0 · e3

‖n1‖
n̂T1 −

ê0 · e4

‖n2‖
n̂T2

= − (x2 − x1) · e0

‖e0‖
nT1
‖n1‖2

− (x3 − x1) · e0

‖e0‖
nT2
‖n2‖2

∇x1
θ =

‖e0‖n̂T1 + (ê0 · e3)n̂T1
‖n1‖

+
‖e0‖n̂T2 + (ê0 · e4)n̂T2

‖n2‖

= (‖e0‖+ (ê0 · e3))
n̂T1
‖n1‖

+ (‖e0‖+ (ê0 · e4))
n̂T2
‖n2‖

= (ê0 · (e0 + e3))
n̂T1
‖n1‖

+ (ê0 · (e0 + e4))
n̂T2
‖n2‖

=
(x2 − x0) · e0

‖e0‖
nT1
‖n1‖2

+
(x3 − x0) · e0

‖e0‖
nT2
‖n2‖2

∇x2
θ = −‖e0‖n̂T1

‖n1‖
= −‖e0‖

nT1
‖n1‖2

∇x3
θ = −‖e0‖n̂T2

‖n2‖
= −‖e0‖

nT2
‖n2‖2

Except for a scaling factor of −1 each of these expressions correspond exactly
to the formulation presented in [Bridson et al. 03]. Using the notation from
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[Bridson et al. 03] we have u1 = −∇x2
θ, u2 = −∇x3

θ, u3 = −∇x0
θ, and

u4 = −∇x1
θ. As before we notice the symmetry in the above expressions

which requires that the expressions for ∇x0
θ and ∇x1

θ differ by a sign due to
the fixed orientation of ê0.

For future reference let’s summarize the vector formulation of the gradients
here :

∇x0θ = − ê0 · e3

‖n1‖
n̂T1 −

ê0 · e4

‖n2‖
n̂T2

∇x1
θ =

ê0 · e1

‖n1‖
n̂T1 +

ê0 · e2

‖n2‖
n̂T2

∇x2
θ = −‖e0‖

‖n1‖
n̂T1

∇x3θ = −‖e0‖
‖n2‖

n̂T2

The units of these expressions are also as we would expect when we notice
that ‖n‖ measures an area. It’s the magnitude of the product of two vectors,
each of which is measured in meters, so its unit must be m2. Once again the
units for ∇θ therefore becomes m−1.

The last variation of the above result can be obtained by using that ê0 ·e3 =
−‖e3‖ cosα3 and similar for the other dot products. Combined with the area
expressions based on height and baseline this gives :

∇x0θ =
cosα3

h3
n̂T1 +

cosα4

h4
n̂T2 (18)

∇x1
θ =

cosα1

h1
n̂T1 +

cosα2

h2
n̂T2 (19)

∇x2θ = − 1

h01
n̂T1 (20)

∇x3
θ = − 1

h02
n̂T2 (21)

6. The Hessian of the bend angle

The gradient of the bending forces is given by minus the Hessian of the bending
energy. To compute this we clearly need the Hessian of the bend-angle :

H(θ) = ∇(∇θ)T

By construction this entire matrix is symmetric since the order of differentia-
tion in mixed derivatives doesn’t matter. By switching the order of differen-
tiation and enforcing symmetry we also get :

∇xi
(∇xj

θ)T = (∇xj
(∇xi

θ)T )T
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In particular that means that the block-diagonals must be symmetric them-
selves.

To more easily manage the expressions we will compute the elements one
block-row at a time, i.e., we will compute∇(∇xi

θ)T for i ∈ {0, 1, 2, 3}. Clearly
the results for i = 1 and i = 3 are related to the corresponding results for
i = 0 and i = 2. We shall use that as a sanity check in the following.

In the computations we will need ∇n̂1 and ∇n̂2 which were computed in
equation 14 and 15. However, they are worth revisiting. Using the inplane
edge normals shown in Figure 2 we see that

∇n̂1 =
(e0 × n̂1)n̂T1∇e3 − (e3 × n̂1)n̂T1∇e0

‖n1‖

=
‖e0‖(ê0 × n̂1)

‖n1‖
n̂T1∇e3 −

‖e3‖(ê3 × n̂1)

‖n1‖
n̂T1∇e0

=
‖e0‖m̂01

‖n1‖
n̂T1∇e3 −

‖e3‖m̂3

‖n1‖
n̂T1∇e0

=
m̂01

h01
n̂T1∇e3 −

m̂3

h3
n̂T1∇e0

When we break this into blocks we get

∇x0
n̂1 =

m̂3

h3
n̂T1 (22)

∇x1
n̂1 = −‖e0‖m̂01 + ‖e3‖m̂3

‖n1‖
n̂T1 = −m01 + m3

‖n1‖
n̂T1

=
m1

‖n1‖
n̂T1 =

‖e1‖m̂1

‖n1‖
n̂T1 =

m̂1

h1
n̂T1 (23)

∇x2
n̂1 =

m̂01

h01
n̂T1 (24)

∇x3
n̂1 = 0 (25)

The pattern should now be fairly obvious. The gradient of the normal with
respect to a vertex is the outer product of the opposing edge normal with the
normal itself and scaled with one over the height to the opposing edge. Based
on this we can immediately write the gradient of n̂2 :

∇x0 n̂2 =
m̂4

h4
n̂T2

∇x1
n̂2 =

m̂2

h2
n̂T2

∇x2 n̂2 = 0

∇x3
n̂2 =

m̂02

h02
n̂T2
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Intuitively this is not surprising. Given a small displacement δx we see that
any component orthogonal to the normal will be projected away, and the re-
maining component will cause the normal to tilt toward or away from the
opposing edge (depending on whether the vertex is being moved up or down).
The scaling factor is the same as we saw in the previous section when com-
puting ∇θ and for the same reason.

With these building blocks in place, we now notice that for all the gradients
of θ we have a scalar function times a vector, so the gradient of that is given
by equation 10. Starting with the simpler expression we get the following for
∇(∇x2

θ)T :

∇(∇x2θ)
T = ∇

(
−‖e0‖
‖n1‖

n̂1

)
= −‖e0‖
‖n1‖

∇n̂1 − n̂1∇
( ‖e0‖
‖n1‖

)
(26)

so we just need :

∇
( ‖e0‖
‖n1‖

)
= ∇

(
1

h01

)
= −∇h01

h2
01

(27)

From a geometrical point of view it is easy to see that ∇x2h01 must be aligned
with mT

01, and in fact we must have ∇x2
h01 = −m̂T

01 such that

∇x2

( ‖e0‖
‖n1‖

)
=

m̂T
01

h2
01

(28)

Similarly we must have ∇x3h01 = 0. From an algebraic point of view we
have :

∇
( ‖e0‖
‖n1‖

)
= ‖e0‖∇

(
1

‖n1‖

)
+

1

‖n1‖
∇‖e0‖

= −‖e0‖
n̂T1∇n1

‖n1‖2
+

1

‖n1‖
êT0∇e0

=
‖n1‖êT0∇e0 − ‖e0‖n̂T1∇n1

‖n1‖2

=
‖n1‖êT0∇e0 − ‖e0‖n̂T1∇ (e0 × e3)

‖n1‖2

=
‖n1‖êT0∇e0 − ‖e0‖n̂T1 (e0 ×∇e3 − e3 ×∇e0)

‖n1‖2

In particular we see from this that

∇x2

( ‖e0‖
‖n1‖

)
= −‖e0‖n̂T1 [e0]×

‖n1‖2
= −‖e0‖2
‖n1‖2

n̂T1 [ê0]× = − n̂T1 [ê0]×
h2

01
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Since the matrix representation for the cross product is skew symmetric it
follows that (

uT [v]×
)T

= [v]T×u = −[v]×u = −v × u

or
uT [v]× = −(v × u)T

As expected we therefore get

∇x2

( ‖e0‖
‖n1‖

)
=

(ê0 × n̂1)T

h2
01

=
m̂T

01

h2
01

The gradient wrt. x0 and x1 is not as easy to derive geometrically. However,
for both of these it is easy to see that any motion along e0 will not change
h01. Consequently the gradient must be perpendicular to e0, and in order to
increase h01 we must move away from x2, so the gradient must be aligned
with m01.

Using the algebraic expression we get

∇x0

( ‖e0‖
‖n1‖

)
= − êT0

‖n1‖
− ‖e0‖n̂T1 [e3]×

‖n1‖2

= − êT0
‖n1‖

+
‖e0‖
‖n1‖2

(e3 × n̂1)T

= − êT0
‖n1‖

+
‖e0‖‖e3‖
‖n1‖2

(ê3 × n̂1)T

= − êT0
‖n1‖

+
‖e0‖‖e3‖
‖n1‖2

m̂T
3

= − êT0
‖n1‖

+
m̂T

3

h01h3
(29)

Since we expect the result to be aligned with m01 we decompose m3 into a
component parallel to e0 and an orthogonal component parallel to m01. From
Figure 4 we get

m̂3 = ê0 cos
(π

2
− α3

)
− m̂01 sin

(π
2
− α3

)
= ê0 sinα3 − m̂01 cosα3

Inserting this in Equation 29 gives :

∇x0

( ‖e0‖
‖n1‖

)
= − êT0

‖n1‖
+

m̂T
3

h01h3

=

(
− 1

‖n1‖
+

sinα3

h01h3

)
êT0 −

cosα3

h01h3
m̂T

01
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m
3

e
0

e
3

α
3

m
01

π
2
−α

3

Figure 4. The decomposition of m3 along e0 and m01.

However, since sinα3 = h3/‖e0‖ we see that

− 1

‖n1‖
+

sinα3

h01h3
= − 1

h01‖e0‖
+
h3/‖e0‖
h01h3

= 0

and therefore

∇x0

( ‖e0‖
‖n1‖

)
= −cosα3

h01h3
m̂T

01

=
ê0 · ê3

h01h3
m̂T

01

=
‖e0‖‖e3‖ê0 · ê3

‖n1‖2
m̂T

01

=
e0 · e3

‖n1‖2
m̂T

01

By symmetry we must have

∇x1

( ‖e0‖
‖n1‖

)
= −cosα1

h01h1
m̂T

01 = −e0 · e1

‖n1‖2
m̂T

01

In summary this gives us

∇x0

( ‖e0‖
‖n1‖

)
=

e0 · e3

‖n1‖2
m̂T

01 = −cosα3

h01h3
m̂T

01 (30)

∇x1

( ‖e0‖
‖n1‖

)
= −e0 · e1

‖n1‖2
m̂T

01 = −cosα1

h01h1
m̂T

01 (31)

∇x2

( ‖e0‖
‖n1‖

)
=

m̂T
01

h2
01

=
1

h2
01

m̂T
01 (32)

∇x3

( ‖e0‖
‖n1‖

)
= 0 (33)
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By combining these results with Equation 27 we can also read off the expres-
sions for ∇h01 :

∇x0
h01 =

h01

h3
cosα3m̂

T
01

∇x1
h01 =

h01

h1
cosα1m̂

T
01

∇x2
h01 = −m̂T

01

∇x3
h01 = 0

What’s important about this is that it allows us to easily write down the
gradients for the heights extending from the other sides of the triangle. Simply
rotate all the labels on the triangle and substitute.

Combining equations 30-33 and equations 22-25 with equation 26 we get :

∇x0
(∇x2

θ)T = −‖e0‖m̂3

‖n1‖h3
n̂T1 + n̂1

(
cosα3

h01h3
m̂T

01

)
= − 1

h01h3

(
m̂3n̂

T
1 − cosα3n̂1m̂

T
01

)
(34)

∇x1
(∇x2

θ)T = −‖e0‖m̂1

‖n1‖h1
n̂T1 + n̂1

(
cosα1

h01h1
m̂T

01

)
= − 1

h01h1

(
m̂1n̂

T
1 − cosα1n̂1m̂

T
01

)
(35)

∇x2
(∇x2

θ)T = −‖e0‖m01

‖n1‖h01
n̂T1 − n̂1

m̂T
01

h2
01

= − 1

h2
01

(
m̂01n̂

T
1 + n̂1m̂

T
01

)
(36)

∇x3(∇x2θ)
T = 0 (37)

The results for the other triangle follow by simple substitution :

∇x0
(∇x3

θ)T = − 1

h02h4

(
m̂4n̂

T
2 − cosα4n̂2m̂

T
02

)
(38)

∇x1(∇x3θ)
T = − 1

h02h2

(
m̂2n̂

T
2 − cosα2n̂2m̂

T
02

)
(39)

∇x2
(∇x3

θ)T = 0 (40)

∇x3
(∇x3

θ)T = − 1

h2
02

(
m̂02n̂

T
2 + n̂2m̂

T
02

)
(41)

At this point it should be noted that the two diagonal blocks ∇x2(∇x2θ)
T

and ∇x3
(∇x3

θ)T are in fact symmetric as we would expect.
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Moving on to the first row of the Hessian we have from equation 18 :

∇(∇x0
θ)T = ∇

(
cosα3

h3
n̂1 +

cosα4

h4
n̂2

)
(42)

To compute this we first need

∇
(

cosα3

h3
n̂1

)
=

cosα3

h3
∇n̂1 + n̂1∇

(
cosα3

h3

)
(43)

and to compute that we need

∇
(

cosα3

h3

)
= cosα3∇

(
1

h3

)
+

1

h3
∇ cosα3

= −cosα3

h2
3

∇h3 +
1

h3
∇ cosα3 (44)

Based on our previous results, the expressions for ∇h3 are straight forward :

∇x0
h3 = −m̂T

3 (45)

∇x1
h3 =

h3

h1
cosβm̂T

3 =
h3

h1
(ê1 · ê3)mT

3 (46)

∇x2h3 =
h3

h01
cosα3m̂

T
3 = − h3

h01
(ê0 · ê3)m̂T

3 (47)

∇x3h3 = 0 (48)

Here β = π − α1 − α3 is the top angle of triangle 1. We also see immediately
that the gradient of α3 with respect to x0 and x2 must be aligned with m01

and m3 respectively, and that the gradient with respect to x3 must be zero.
The gradient of α3 with respect to x1 is more complicated. To derive the
exact expressions, let us consider ∇ cosα3 :

∇ cosα3 = −∇(ê0 · ê3)

= −êT0∇ê3 − ê3∇ê0

= −êT0 (1− ê3ê
T
3 )
∇e3

‖e3‖
− êT3 (1− ê0ê

T
0 )
∇e0

‖e0‖
This breaks into blocks in a straightforward way :

∇x0 cosα3 =
êT3 (1− ê0ê

T
0 )

‖e0‖

∇x1
cosα3 = − êT3 (1− ê0ê

T
0 )

‖e0‖
+

êT0 (1− ê3ê
T
3 )

‖e3‖

∇x2
cosα3 = − êT0 (1− ê3ê

T
3 )

‖e3‖
∇x3

cosα3 = 0
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To simplify these expressions, consider a variation δx and let it be decomposed
according to the orthogonal frame consisting of (êj , n̂1, m̂j) :

δx = δxêj
+ δxn̂1

+ δxm̂j
(49)

When this variation is applied to the expression êTi (1− êj ê
T
j ) we get :

êTi (1− êj ê
T
j )δx = êTi (1− êj ê

T
j )(δxêj

+ δxn̂1
+ δxm̂j

)

= êTi (δxn̂1
+ δxm̂j

)

= êTi δxm̂j

The first equality follows because (1 − êj ê
T
j ) projects away any component

along êj , and the second equality follows because êi and n̂1 are orthogonal.
Since

ê0 = sinα3m̂3 − cosα3ê3

ê3 = − sinα3m̂01 − cosα3ê0

we can further rewrite the two relevant variations to get

êT3 δxm01 = −(sinα3m̂
T
01 + cosα3ê

T
0 )δxm01

= − sinα3m̂
T
01δxm01

= − sinα3m̂
T
01δx

= − h01

‖e3‖
m̂T

01δx

and

eT0 δxm3 = (sinα3m̂
T
3 − cosα3ê

T
3 )δxm3

= sinα3m̂
T
3 δxm3

= sinα3m̂
T
3 δx

=
h3

‖e0‖
m̂T

3 δx

It therefore follows that

∇x0
cosα3 = − h01

‖e0‖‖e3‖
m̂T

01

∇x1
cosα3 =

h01

‖e0‖‖e3‖
m̂T

01 +
h3

‖e0‖‖e3‖
m̂T

3

∇x2
cosα3 = − h3

‖e0‖‖e3‖
m̂T

3

∇x3
cosα3 = 0
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It should be noted here that cosα3 increases when α3 decreases which explains
the signs in the expressions above. When we combine the above with the
expressions for ∇h3 in equations 45-48 we get the following for the gradient
wrt. x0 :

∇x0

(
cosα3

h3

)
=

cosα3

h2
3

m̂T
3 −

1

h3

h01

‖e0‖‖e3‖
m̂T

01

=
cosα3

h2
3

m̂T
3 −

m̂T
01

‖e0‖2

For the gradient wrt. x1 we have :

∇x1

(
cosα3

h3

)
= −cosα3

h2
3

h3

h1
(ê1 · ê3)m̂T

3 +
1

h3

1

‖e0‖‖e3‖
(
h01m̂

T
01 + h3m̂

T
3

)
= −

(
cosα3

h1h3
(ê1 · ê3)− 1

‖e0‖‖e3‖

)
m̂T

3 +
h01

h3‖e0‖‖e3‖
m̂T

01

= −
(

cosα3

h1h3
(ê1 · ê3)− 1

‖e0‖‖e3‖

)
m̂T

3 +
m̂T

01

‖e0‖2

= − 1

h1h3

(
cosα3 cosβ − h1h3

‖e0‖‖e3‖

)
m̂T

3 +
m̂T

01

‖e0‖2

= − 1

h1h3
(cosα3 cosβ − sinα3 sinβ) m̂T

3 +
m̂T

01

‖e0‖2

= − 1

h1h3
cos(α3 + β)m̂T

3 +
m̂T

01

‖e0‖2

= − 1

h1h3
cos(π − α1)m̂T

3 +
m̂T

01

‖e0‖2

=
cosα1

h1h3
m̂T

3 +
m̂T

01

‖e0‖2

Finally, the gradient wrt. x2 becomes :

∇x2

(
cosα3

h3

)
=

cosα3

h2
3

h3

h01
(ê0 · ê3)m̂T

3 −
1

h3

h3

‖e0‖‖e3‖
m̂T

3

= −
(

cos2 α3

h3h01
+

1

‖e0‖‖e3‖

)
m̂T

3

= − 1

h01h3

(
cos2 α3 +

h01h3

‖e0‖‖e3‖

)
m̂T

3

= − 1

h01h3

(
cos2 α3 + sin2 α3

)
m̂T

3

= − m̂T
3

h01h3
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As previously mentioned the gradient wrt. x3 is simply 0. In summary we
therefore have :

∇x0

(
cosα3

h3

)
=

cosα3

h2
3

m̂T
3 −

m̂T
01

‖e0‖2

∇x1

(
cosα3

h3

)
=

cosα1

h1h3
m̂T

3 +
m̂T

01

‖e0‖2

∇x2

(
cosα3

h3

)
= − m̂T

3

h01h3

∇x3

(
cosα3

h3

)
= 0

(50)

When we insert these results in Equation 43 along with the results from
Equation 22-25 we now get :

∇x0

(
cosα3

h3
n̂1

)
=

cosα3

h3

m̂3

h3
n̂T1 + n̂1

(
cosα3

h2
3

m̂T
3 −

m̂T
01

‖e0‖2
)

=
cosα3

h2
3

m̂3n̂
T
1 +

cosα3

h2
3

n̂1m̂
T
3 −

n̂1m̂
T
01

‖e0‖2

=
cosα3

h2
3

(
m̂3n̂

T
1 + n̂1m̂

T
3

)
− n̂1m̂

T
01

‖e0‖2

∇x1

(
cosα3

h3
n̂1

)
=

cosα3

h3

m̂1

h1
n̂T1 + n̂1

(
cosα1

h1h3
m̂T

3 +
m̂T

01

‖e0‖2
)

=
cosα3

h3h1
m̂1n̂

T
1 +

cosα1

h1h3
n̂1m̂

T
3 +

n̂1m̂
T
01

‖e0‖2

=
1

h1h3

(
cosα3m̂1n̂

T
1 + cosα1n̂1m̂

T
3

)
+

n̂1m̂
T
01

‖e0‖2

∇x2

(
cosα3

h3
n̂1

)
=

cosα3

h3

m̂01

h01
n̂T1 − n̂1

m̂T
3

h01h3

=
cosα3

h3h01
m̂01n̂

T
1 − n̂1

m̂T
3

h01h3

=
1

h01h3

(
cosα3m̂01n̂

T
1 − n̂1m̂

T
3

)
∇x3

(
cosα3

h3
n̂1

)
= 0

These results could also have been obtained by working with the vector ex-
pression, but it turns out to be a little more complicated to do so.
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Given the above results we can now write down all of the remaining com-
ponents needed by simple substitution. First we get :

∇x0

(
cosα4

h4
n̂2

)
=

cosα4

h2
4

(
m̂4n̂

T
2 + n̂2m̂

T
4

)
− n̂2m̂

T
02

‖e0‖2

∇x1

(
cosα4

h4
n̂2

)
=

1

h2h4

(
cosα4m̂2n̂

T
2 + cosα2n̂2m̂

T
4

)
+

n̂2m̂
T
02

‖e0‖2

∇x2

(
cosα4

h4
n̂2

)
= 0

∇x3

(
cosα4

h4
n̂2

)
=

1

h02h4

(
cosα4m̂02n̂

T
2 − n̂2m̂

T
4

)

Then, for the second row of the Hessian we get :

∇x0

(
cosα1

h1
n̂1

)
=

1

h1h3

(
cosα1m̂3n̂

T
1 + cosα3n̂1m̂

T
1

)
+

n̂1m̂
T
01

‖e0‖2

∇x1

(
cosα1

h1
n̂1

)
=

cosα1

h2
1

(
m̂1n̂

T
1 + n̂1m̂

T
1

)
− n̂1m̂

T
01

‖e0‖2

∇x2

(
cosα1

h1
n̂1

)
=

1

h01h1

(
cosα1m̂01n̂

T
1 − n̂1m̂

T
1

)
∇x3

(
cosα1

h1
n̂1

)
= 0

and

∇x0

(
cosα2

h2
n̂2

)
=

1

h2h4

(
cosα2m̂4n̂

T
2 + cosα4n̂2m̂

T
2

)
+

n̂2m̂
T
02

‖e0‖2

∇x1

(
cosα2

h2
n̂2

)
=

cosα2

h2
2

(
m̂2n̂

T
2 + n̂2m̂

T
2

)
− n̂2m̂

T
02

‖e0‖2

∇x2

(
cosα2

h2
n̂2

)
= 0

∇x3

(
cosα2

h2
n̂2

)
=

1

h02h2

(
cosα2m̂02n̂

T
2 − n̂2m̂

T
2

)

When we put all this together using equation 42 we get the desired elements



Tamstorf: Derivation of discrete bending forces and their gradients 27

of the Hessian :

∇x0
(∇x0

θ) =
cosα3

h2
3

(
m̂3n̂

T
1 + n̂1m̂

T
3

)
− n̂1m̂

T
01

‖e0‖2

+
cosα4

h2
4

(
m̂4n̂

T
2 + n̂2m̂

T
4

)
− n̂2m̂

T
02

‖e0‖2

∇x1
(∇x0

θ) =
1

h1h3

(
cosα3m̂1n̂

T
1 + cosα1n̂1m̂

T
3

)
+

n̂1m̂
T
01

‖e0‖2

+
1

h2h4

(
cosα4m̂2n̂

T
2 + cosα2n̂2m̂

T
4

)
+

n̂2m̂
T
02

‖e0‖2

∇x2
(∇x0

θ) =
1

h01h3

(
cosα3m̂01n̂

T
1 − n̂1m̂

T
3

)
∇x3(∇x0θ) =

1

h02h4

(
cosα4m̂02n̂

T
2 − n̂2m̂

T
4

)
and

∇x0
(∇x1

θ) =
1

h1h3

(
cosα1m̂3n̂

T
1 + cosα3n̂1m̂

T
1

)
+

n̂1m̂
T
01

‖e0‖2

+
1

h2h4

(
cosα2m̂4n̂

T
2 + cosα4n̂2m̂

T
2

)
+

n̂2m̂
T
02

‖e0‖2

∇x1
(∇x1

θ) =
cosα1

h2
1

(
m̂1n̂

T
1 + n̂1m̂

T
1

)
− n̂1m̂

T
01

‖e0‖2

+
cosα2

h2
2

(
m̂2n̂

T
2 + n̂2m̂

T
2

)
− n̂2m̂

T
02

‖e0‖2

∇x2
(∇x1

θ) =
1

h01h1

(
cosα1m̂01n̂

T
1 − n̂1m̂

T
1

)
∇x3(∇x1θ) =

1

h02h2

(
cosα2m̂02n̂

T
2 − n̂2m̂

T
2

)
By comparison with the results in equations 34-41 we see that ∇xi

(∇xj
θ)T =

(∇xj
(∇xi

θ)T )T as expected for i 6= j. What remains to be shown is that
∇xi(∇xiθ)

T is symmetric for i ∈ {0, 1}. To show this we have to show that
n̂1m̂

T
01 + n̂2m̂

T
02 is symmetric.

Let n = n̂1 + n̂2 be a vector proportional to the average of the two triangle
normals, and let t = e0×n be orthogonal to both n and e0 as shown in figure 5.
The set (ê0, n̂, t̂) then constitutes an orthonormal basis for R3. Consider now
a small variation δx, and decompose it according to this basis :

δx = δxe0 + δxn + δxt

Since e0 is orthogonal to both m01 and m02 it follows that :

(n̂1m̂
T
01 + n̂2m̂

T
02)δx = (n̂1m̂

T
01 + n̂2m̂

T
02)(δxn + δxt)



28 Walt Disney Animation Studios Tech Report

n
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n
2

m
02

m
01

θ/2

π−θ

2

n

t

Figure 5. The cross-section of a hinge.

To further simplify this, we compute the following quantities with the help of
figure 5 :

m̂T
01δxn = ‖δxn‖ cos

(
π
2 − θ

2

)
= ‖δxn‖ sin θ

2

m̂T
02δxn = ‖δxn‖ cos

(
π
2 − θ

2

)
= ‖δxn‖ sin θ

2

m̂T
01δxt = ‖δxt‖ cos θ2

m̂T
02δxt = −‖δxt‖ cos θ2

Using this we get

(n̂1m̂
T
01 + n̂2m̂

T
02)δx =

(
‖δxn‖ sin θ

2 + ‖δxt‖ cos θ2
)
n̂1+(

‖δxn‖ sin θ
2 − ‖δxt‖ cos θ2

)
n̂2

Since

n̂1 = n̂ cos θ2 − t̂ sin θ
2

n̂2 = n̂ cos θ2 + t̂ sin θ
2

it follows that

(n̂1m̂
T
01 + n̂2m̂

T
02)δx = 2‖δxn‖n̂ cos θ2 sin θ

2 − 2‖δxt‖t̂ sin θ
2 cos θ2

= ‖δxn‖n̂ sin θ − ‖δxt‖t̂ sin θ

= sin θ
(
(δx · n̂)n̂− (δx · t̂)t̂

)
= sin θ

(
n̂n̂T − t̂t̂T

)
δx

From this we see that n̂1m̂
T
01 + n̂2m̂

T
02 must be symmetric, because n̂n̂T − t̂t̂T

is the difference between two symmetric matrices, which therefore must be
symmetric.

To summarize the result in matrix form, let us define the following short-
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hand notations :

Hij = ∇xj
(∇xi

θ)T (51)

Mijk =
cosαi
hihj

m̂jn̂
T
k (52)

Nij =
1

h0ihj
n̂im̂

T
j (53)

S(A) = A+AT (54)

Bi =
1

‖e0‖2
n̂im̂

T
0i (55)

Using this we get the following where all terms pertaining to triangle 1 are on
the left while all terms pertaining to triangle 2 are on the right :

H00 = S(M331)−B1 +S(M442)−B2

H01 = M311 +MT
131 +B1 +M422 +MT

242 +B2

H02 = M3.01.1 −N13

H03 = M4.02.2 −N24

H11 = S(M111)−B1 +S(M222)−B2

H12 = M1.01.1 −N11

H13 = M2.02.2 −N22

H22 = −S(N1.01)

H23 = 0

H33 = −S(N2.02)

The remaining blocks are obtained by symmetry. The break-up of the terms
into two groups is important, because it shows that we can compute all the
contributions from one triangle without knowing anything about the other
and vice versa. In fact we can consider each hinge as consisting of two half-
hinges where each half-hinge is treated almost identically. The one caveat is
that when you change the viewpoint, the implied direction of edge e0 changes.
By carefully going through and writing out all the terms when the view point
is flipped around, it turns out that the only place where this has any conse-
quences is the computation of H01. Here, changing the view point will cause
B1 and B2 to be transposed. Since B1 + B2 is symmetric, transposing both
of them is ok, but if we want to break the computation into two parts then
we have to choose a consistent orientation. It should also be noted that while
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the complete Hessian is symmetric, the parts associated with each triangle
are not since neither B1 nor B2 by itself is symmetric.

In order to allow us to break the computation into two parts we will in-
troduce a “conditional transpose” operator denoted by a dagger. With this
notation, B†i means that Bi should be transposed if the orientation of e0 in
the current view does not agree with a globally chosen orientation of the edge.
It doesn’t matter what that global orientation is as long as it stays consistent
throughout the computations.

6.1. Assembling the Hessian for a mesh

In this section we combine all the previous results to compute the bending
forces and gradients for an entire mesh. As we have seen in the previous
section, the Hessian for the bend-angle can be computed by considering one
triangle at a time. However, as we’ve seen in equation 12, the Hessian for
the bending energy also contains a term based on the outer product of the
gradient of the bend angle with itself. This term is more effectively computed
on a per-edge basis, so we will split the overall computation for the force
gradients into two stages. One for ζ(θ)H(θ) and one for ξ(θ)(∇θ)T∇θ. The
computation of the forces themselves simply requires ζ(θ)∇θ.

In order to assemble the forces and the first term of the force gradients for
an entire mesh, we have to add the contributions from all the different hinges
in the mesh. To see how best to do this, it shall prove advantageous to use a
different labeling scheme for vertices, edges, angles, and altitudes. This new
scheme is shown in figure 6. All entities are labeled in counter-clockwise order,
and edges (and all related quantities) are labeled the same as the opposing
vertices. To minimize the potential confusion, the angles in this schemes are
referred to as β (as opposed to α), the altitudes as η (as opposed to h), and
the inplane edge-normals as t (as opposed to m). In equations we will refer
to the various quantities using an index i, which can take on values 0, 1 and
2. Arithmetic on all indices is performed modulo 3.

To translate our current results into this new scheme, we first write the
contributions to the Hessian for a single half-hinge from triangle 1 in full
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5.1. Assembling the Hessian for a mesh

In this section we combine all the previous results to compute the bending
forces and gradients for an entire mesh. As we have seen in the previous
section, the Hessian for the bend-angle can be computed by considering one
triangle at a time. However, as we’ve seen in equation 13, the Hessian for
the bending energy also contains a term based on the outer product of the
gradient of the bend angle with itself. This term is more effectively computed
on a per-edge basis, so we will split the overall computation into two stages.
One for u(θ)H(θ) and one for v(θ)(∇θ)T∇θ.

In order to assemble the first term for an entire mesh, we have to add the
contributions from all the different hinges in the mesh. To see how best to
do this, it shall prove advantageous to use a different labeling scheme for
vertices, edges, angles, and altitudes. This new scheme is shown in figure 7.
All entities are labeled in counter-clockwise order, and edges (and all related
quantities) are labeled the same as the opposing vertices. To minimize the
potential confusion, the angles in this schemes are referred to as β (as opposed
to α) and the altitudes as η (as opposed to h). In equations we will refer to
the various quantities using an index i, which can take on values 0, 1 and 2.
Arithmetic on all indices is performed modulo 3.

x0

x1 x2e0

e2 e1

β1 β2

β0

Figure 7. The triangle centric labeling scheme used to assemble the Hessian for the
entire mesh.

To translate our current results into this new scheme, we first write the
contributions to the Hessian for a single half-hinge from triangle 1 in full

Figure 6. The triangle centric labeling scheme used to assemble the Hessian for the
entire mesh.

form :

H∗00 =
cosα3

h2
3

(
m̂3n̂

T
1 + n̂1m̂

T
3

)
− n̂1m̂

T
01

‖e0‖2

H∗01 =
1

h1h3

(
cosα3m̂1n̂

T
1 + cosα1n̂1m̂

T
3

)
+

(
n̂1m̂

T
01

‖e0‖2
)†

H∗02 =
1

h01h3

(
cosα3m̂01n̂

T
1 − n̂1m̂

T
3

)
H∗03 =0

H∗11 =
cosα1

h2
1

(
m̂1n̂

T
1 + n̂1m̂

T
1

)
− n̂1m̂

T
01

‖e0‖2

H∗12 =
1

h01h1

(
cosα1m̂01n̂

T
1 − n̂1m̂

T
1

)
H∗13 =0

H∗22 =− 1

h2
01

(
m̂01n̂

T
1 + n̂1m̂

T
01

)
H∗23 =0

H∗33 =0

The asterisk is here used to denote that it’s not the full Hessian. Since all
the subblocks involving vertex 3 are zero we will drop H∗03, H∗13, H∗23, and
H∗33 in the following. However, it should be noted that while there are no
contributions from the blocks involving vertex 3, there are non-zero contri-
butions for all the remaining vertices. As we proceed to assemble the global
Hessian for an entire mesh this means that each subblock will receive as many
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contributions from a given triangle as there are hinges in that triangle.

The change to the new labels can now be performed by careful but simple
substitution. To make it easy to compute the Hessian for all the three half-
hinges within a triangle, we will write the result for the new labels relative to
an arbitrary index i. The original indices can be recovered by setting i = 0
and identifying the indices in figure 6 with those in figure 1 and 2. Finally,
we use the abbreviation li = ‖ei‖.

H∗i+1,i+1(θi) =
cosβi−1

η2
i+1

(
t̂i+1n̂

T + n̂t̂Ti+1

)
− n̂t̂Ti

l2i
(56)

H∗i+1,i−1(θi) =
1

ηi−1ηi+1

(
cosβi−1t̂i−1n̂

T + cosβi+1n̂t̂Ti+1

)
+

(
n̂t̂Ti
l2i

)†
(57)

H∗i+1,i(θi) =
1

ηiηi+1

(
cosβi−1t̂in̂

T − n̂t̂Ti+1

)
(58)

H∗i−1,i−1(θi) =
cosβi+1

η2
i−1

(
t̂i−1n̂

T + n̂t̂Ti−1

)
− n̂t̂Ti

l2i
(59)

H∗i−1,i(θi) =
1

ηiηi−1

(
cosβi+1t̂in̂

T − n̂t̂Ti−1

)
(60)

H∗i,i(θi) =− 1

η2
i

(
t̂in̂

T + n̂t̂Ti
)

(61)

Let H4 denote the combined Hessian for a triangle. To handle boundary
cases correctly we introduce an indicator function σi which is 1 if edge i
is interior, and 0 if edge i is on the boundary. Given this definition, let
ζi = σiζ(θi). We then get the following contribution to H4 from the 00
subblock :

H400 =ζ0H
∗
00(θ0) + ζ1H

∗
00(θ1) + ζ2H

∗
00(θ2)

=ζ0H
∗
i,i|i=0 + ζ1H

∗
i−1,i−1|i=1 + ζ2H

∗
i+1,i+1|i=2
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Similarly we can write the contributions for all the subblocks :

H400 =ζ0H
∗
i,i|i=0 +ζ1H

∗
i−1,i−1|i=1 +ζ2H

∗
i+1,i+1|i=2

H401 =ζ0H
∗
i,i+1|i=0 +ζ1H

∗
i−1,i|i=1 +ζ2H

∗
i+1,i−1|i=2

H402 =ζ0H
∗
i,i−1|i=0 +ζ1H

∗
i−1,i+1|i=1 +ζ2H

∗
i+1,i|i=2

H411 =ζ0H
∗
i+1,i+1|i=0 +ζ1H

∗
i,i|i=1 +ζ2H

∗
i−1,i−1|i=2

H412 =ζ0H
∗
i+1,i−1|i=0 +ζ1H

∗
i,i+1|i=1 +ζ2H

∗
i−1,i|i=2

H422 =ζ0H
∗
i−1,i−1|i=0 +ζ1H

∗
i+1,i+1|i=1 +ζ2H

∗
i,i|i=2

Using the results from equations 56-61 (transposed if necessary) we can ex-
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pand each of these

H400 = −ζ0
1

η2
0

(
t̂0n̂

T + n̂t̂T0
)

+ ζ1
cosβ2

η2
0

(
t̂0n̂

T + n̂t̂T0
)
− ζ1

n̂t̂T1
l21

+ ζ2
cosβ1

η2
0

(
t̂0n̂

T + n̂t̂T0
)
− ζ2

n̂t̂T2
l22

=
1

η2
0

(ζ1 cosβ2 + ζ2 cosβ1 − ζ0)
(
t̂0n̂

T + n̂t̂T0
)
− ζ1

n̂t̂T1
l21
− ζ2

n̂t̂T2
l22

H401 = ζ0
1

η0η1

(
cosβ2n̂t̂T0 − t̂1n̂

T
)

+ ζ1
1

η1η0

(
cosβ2t̂1n̂

T − n̂t̂T0
)

+ ζ2
1

η1η0

(
cosβ1t̂1n̂

T + cosβ0n̂t̂T0
)

+ ζ2

(
n̂t̂T2
l22

)†
=

1

η0η1

(
(ζ2 cosβ0 + ζ0 cosβ2 − ζ1)n̂t̂T0 + (ζ2 cosβ1 + ζ1 cosβ2 − ζ0)t̂1n̂

T
)

+ ζ2
n̂t̂T2
l22

H402 = ζ0
1

η0η2

(
cosβ1n̂t̂T0 − t̂2n̂

T
)

+ ζ1
1

η0η2

(
cosβ0n̂t̂T0 + cosβ2t̂2n̂

T
)

+ ζ1

(
t̂1n̂

T

l21

)†
+ ζ2

1

η2η0

(
cosβ1t̂2n̂

T − n̂t̂T0
)

=
1

η0η2

(
(ζ1 cosβ0 + ζ0 cosβ1 − ζ2)n̂t̂T0 + (ζ2 cosβ1 + ζ1 cosβ2 − ζ0)t̂2n̂

T
)

+ ζ1
t̂1n̂

T

l21

H411 = ζ0
cosβ2

η2
1

(
t̂1n̂

T + n̂t̂T1
)
− ζ0

n̂t̂T0
l20

− ζ1
1

η2
1

(
t̂1n̂

T + n̂t̂T1
)

+ ζ2
cosβ0

η2
1

(
t̂1n̂

T + n̂t̂T1
)
− ζ2

n̂t̂T2
l22

=
1

η2
1

(ζ2 cosβ0 + ζ0 cosβ2 − ζ1)
(
t̂1n̂

T + n̂t̂T1
)
− ζ0

n̂t̂T0
l20
− ζ2

n̂t̂T2
l22
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H412 = ζ0
1

η2η1

(
cosβ2t̂2n̂

T + cosβ1n̂t̂T1
)

+ ζ0

(
n̂t̂T0
l20

)†
+ ζ1

1

η1η2

(
cosβ0n̂t̂T1 − t̂2n̂

T
)

+ ζ2
1

η2η1

(
cosβ0t̂2n̂

T − n̂t̂T1
)

=
1

η1η2

(
(ζ2 cosβ0 + ζ0 cosβ2 − ζ1)t̂2n̂

T + (ζ1 cosβ0 + ζ0 cosβ1 − ζ2)n̂t̂T1
)

+ ζ0
n̂t̂T0
l20

H422 = ζ0
cosβ1

η2
2

(
t̂2n̂

T + n̂t̂T2
)
− ζ0

n̂t̂T0
l20

+ ζ1
cosβ0

η2
2

(
t̂2n̂

T + n̂t̂T2
)
− ζ1

n̂t̂T1
l21

− ζ2
1

η2
2

(
t̂2n̂

T + n̂t̂T2
)

=
1

η2
2

(ζ1 cosβ0 + ζ0 cosβ1 − ζ2)
(
t̂2n̂

T + n̂t̂T2
)
− ζ0

n̂t̂T0
l20
− ζ1

n̂t̂T1
l21

Clearly, the numbering of the vertices is arbitrary, so in the end we should
get the same Hessian for any cyclic permutation of the indices. As a sanity
check we should therefore see the following relationship :

H00 → H11 → H22

and

H01 → H12 → H20 = HT
02

It’s important to notice the transpose at the end of this last sequence since
it is essential for the results to match. To verify the results, we will rewrite
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them in an easy to compare fashion :

H400 =
1

η2
0

(ζ2 cosβ1 + ζ1 cosβ2 − ζ0)
(
t̂0n̂

T + n̂t̂T0
)
− ζ1

n̂t̂T1
l21
− ζ2

n̂t̂T2
l22

H411 =
1

η2
1

(ζ0 cosβ2 + ζ2 cosβ0 − ζ1)
(
t̂1n̂

T + n̂t̂T1
)
− ζ0

n̂t̂T0
l20
− ζ2

n̂t̂T2
l22

H422 =
1

η2
2

(ζ1 cosβ0 + ζ0 cosβ1 − ζ2)
(
t̂2n̂

T + n̂t̂T2
)
− ζ0

n̂t̂T0
l20
− ζ1

n̂t̂T1
l21

H401 =
1

η0η1

(
(ζ2 cosβ1 + ζ1 cosβ2 − ζ0)t̂1n̂

T + (ζ2 cosβ0 + ζ0 cosβ2 − ζ1)n̂t̂T0
)

+ ζ2

(
n̂t̂T2
l22

)†
H412 =

1

η1η2

(
(ζ0 cosβ2 + ζ2 cosβ0 − ζ1)t̂2n̂

T + (ζ0 cosβ1 + ζ1 cosβ0 − ζ2)n̂t̂T1
)

+ ζ0

(
n̂t̂T0
l20

)†
(H402)T =

1

η0η2

(
(ζ1 cosβ0 + ζ0 cosβ1 − ζ2)t̂0n̂

T + (ζ1 cosβ2 + ζ2 cosβ1 − ζ0)n̂t̂T2
)

+ ζ1

(
n̂t̂T1
l21

)†
Given this formulation it should be obvious that there are significant compu-
tational advantages over a naive computation of the Hessian for each hinge.
In particular, we see that there are really only three different outer products
which have to be computed, and there are also only three different cosine
expressions.

Let

γi = ζi−1 cosβi+1 + ζi+1 cosβi−1 − ζi
Ti = n̂t̂Ti

We then get :

H400 =
1

η2
0

γ0

(
TT0 + T0

)
− ζ1
l21
T1 −

ζ2
l22
T2

H411 =
1

η2
1

γ1

(
TT1 + T1

)
− ζ0
l20
T0 −

ζ2
l22
T2

H422 =
1

η2
2

γ2

(
TT2 + T2

)
− ζ0
l20
T0 −

ζ1
l21
T1

H401 =
1

η0η1

(
γ0T

T
1 + γ1T0

)
+
ζ2
l22
T †2

H412 =
1

η1η2

(
γ1T

T
2 + γ2T1

)
+
ζ0
l20
T †0

(H402)T =
1

η0η2

(
γ2T

T
0 + γ0T2

)
+
ζ1
l21
T †1
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Here we also notice that the term ζiTi/l
2
i is used three times. Taking this

into account we need to compute 3 outer products, 12 scaled versions of these
outer products and 15 matrix additions of 3× 3 matrices in order to compute
the lower half of the Hessian for one triangle. The other half follows from
symmetry.

In comparison, the Hessian for a single full hinge requires six different outer
products, 20 scaled versions of these, and 18 matrix additions. For a regular
mesh there are twice as many edges as faces, so the total (relative) cost for the
entire mesh becomes 12 outer products, 40 scale operations and 36 additions
vs. 3, 12 and 15 operations. Roughly speaking, it should therefore provide
a 3x speedup. However, the locality of the above computation also helps
cache-coherency, which can provide a significant speedup on its own.

By combining the results presented so far we get the following algorithm for
computing the first term of the Hessian of the bending energy for the entire
mesh :

• For each triangle

compute face normal, n

compute triangle area, 2A = ‖n‖
normalize face normal, n̂ = n/‖n‖

• For each edge

compute edge vector, e

compute edge length, l = ‖e‖
compute normalized edge vector, ê = e/‖e‖
compute ζ(θ) and v(θ)

• For each triangle and i ∈ {0, 1, 2} :

compute cosβi = −êi−1 · êi+1. Store with vertex.

compute the three altitudes, ηi = 2A/li. Store with vertex.

compute the three outward-pointing edge-normals, t̂i = êi × n̂.

compute the three outer products, Ti = n̂t̂Ti

compute T̃i = ζiTi/l
2
i .

compute γi = ζi−1 cosβi+1 + ζi+1 cosβi−1 − ζi
set H4ii = γi

η2i
(TTi + Ti)

update H4i−1,i−1− = T̃i and H4i+1,i+1− = T̃i

set H4i−1,i = γi−1

ηi−1ηi
TTi
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update H4i+1,i−1+ = T̃ †i

update H4i,i+1+ = γi+1

ηiηi+1
TTi

set H410 = (H401)T , H421 = (H412)T , and H402 = (H420)T

add H4 to the global matrix

In order to finish the computation of the Hessian for the bending energy
we need to compute the term ξ(θ)(∇θ)T∇θ. It can be shown that the sum
of ∇θ for all edges incident to a given vertex almost falls out for free from
the above computation. However, this would not provide ∇θ for each edge.
Since ξ(θ)(∇θ)T∇θ contains terms which depend on two triangles it is also not
practical to do a per-triangle decomposition as above. In the end it is most
efficient to compute ξ(θ)(∇θ)T and ∇θ and then compute the outer product
by simple multiplication.

7. Lack of positive definiteness

In many situations it is desirable for a matrix to be positive definite. In
particular this is a requirement for being able to use the conjugate gradient
method to solve the corresponding set of linear equations.

In this section we will show that the Hessian of the bending energy is
not guaranteed to be positive definite. In fact, it is at best positive semi-
definite. The fact that it is not always positive definite is not at all surprising.
It was shown in by [Coleman and Noll 59] that a strictly convex energy is
incompatible with frame invariance which means that a strictly convex energy
must depend on the choice of coordinate system. Strict convexity also implies
uniqueness of all solutions, which precludes phenomena like buckling [Hill 57].

To show that the Hessian is at best positive semi-definite we note that the
bending energy is designed to be invariant under rigid body transformations.
In particular this means that it is invariant under translations. Hence if we
translate all vertices by the same amount, neither the energy nor the forces
change. We might therefore guess that 0 is an eigenvalue for the Hessian
corresponding to eigenvectors consisting of uniform translations. This is in
fact the case which we can prove by considering a uniform translation in
configuration space

v = [u,u,u,u].

Here u is the translation vector in R3. With this notation we need to show
that

−H(Eb)v =
(
ζ(θ)H(θ) + ξ(θ)∇θT∇θ

)
v = 0
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To do this, let us first consider (∇θ)v. Given the expressions in equations
18-21 we get

(∇θ)v =

(
cosα3

h3
+

cosα1

h1
− 1

h01

)
n̂T1 u

+

(
cosα4

h4
+

cosα2

h2
− 1

h02

)
n̂T2 u

If we consider just the first of these terms, then we see that

cosα3

h3
+

cosα1

h1
− 1

h01
=
‖e3‖ cosα3

2A1
+
‖e1‖ cosα1

2A1
− ‖e0‖

2A1

=
1

2A1

(
‖e3‖

γ‖e0‖
‖e3‖

+ ‖e1‖
(1− γ)‖e0‖
‖e1‖

− ‖e0‖
)

= 0 (62)

Here, γ‖e0‖ is the distance from x0 to the projection of x2 onto e0, and
(1− γ)‖e0‖ is the distance from the same projection to x1. The fact that the
second term is also 0 follows by symmetry, and as a consequence we see that
(∇θ)v = 0.

Computing H(θ)v is a little more tedious, but essentially straight forward.
After collecting terms, the scale-factors we just considered for (∇θ)v show up
again which means that those terms vanish. The remaining terms are scaled
by factors of the following form :

m̂3

h3
+

m̂1

h1
+

m̂01

h01
=
‖e3‖m̂3

2A1
+
‖e1‖m̂1

2A1
+
‖e0‖m̂01

2A1

=
1

2A1
(m3 + m1 + m01)

= 0

The last equality follows from the fact that e3 + e1 + e01 = 0 since all the
edges connect together and mi is just an inplane rotation of ei. From all
this it follows that H(θ)v = 0, so v is an eigenvector corresponding to a zero
eigenvalue. And since u, which is used to define v, can be chosen arbitrarily
in R3 it follows that the zero eigenvalue has at least geometric multiplicity 3.

It should be noted that all of the above computations are valid for any
configuration, so the Hessian of the bending energy is never strictly positive
definite.

In turns out that there is one more zero eigenvalue. This eigenvalue cor-
responds to uniform scaling along the hinge edge. It is obvious that such a
scaling won’t change the hinge-angle, so the energy remains unchanged, and



40 Walt Disney Animation Studios Tech Report

since the eigenvalue is zero, it follows that the forces also don’t change. The
corresponding eigenvector can be written as :

v = [v0,v1,v2,v3]

where vi = (xi · e0)e0. It is easy to see that v is orthogonal to ∇θ since e0

is orthogonal to n1 and n2. What remains to show is that H(θ)v = 0. To do
this we will use the notation introduced in equation 51-55.

First we note that n̂i and m̂0i are both perpendicular to e0, so all terms
involving Mijkvl and Bivl are zero. Similarly all terms involving NT

ijvl and
Ni.0jvl are zero. Let H0 denote the first block row of H(θ). After collecting
terms we get :

H0v =
1

h3

(
cosα3

h3
(x0 · e0) +

cosα1

h1
(x1 · e0)− 1

h01
(x2 · e0)

)
n̂1m̂

T
3 e0+

1

h4

(
cosα4

h4
(x0 · e0) +

cosα2

h2
(x1 · e0)− 1

h02
(x3 · e0)

)
n̂2m̂

T
4 e0

For the first term we have :

cosα3

h3
(x0 · e0) +

cosα1

h1
(x1 · e0)− 1

h01
(x2 · e0) =

cosα3

h3
(x0 · e0) +

cosα1

h1
((x0 + e0) · e0)− 1

h01
((x0 + e1) · e0) =

cosα1

h1
(e0 · e0)− 1

h01
(e1 · e0) =

cosα1

h1
‖e0‖2 −

cosα1

h01
‖e1‖‖e0‖ =

cosα1‖e0‖
(‖e0‖

h1
− ‖e1‖

h01

)
= 0

The second equality here follows from equation 62. The last equality follows
from the fact that the two right triangles with sides (e1, h01) and (e0, h1) are
similar (all their angles are the same), so the ratios between the lengths of
their sides must be the same. By symmetry it follows that the second term in
the expression for H0v is also zero, so we have H0v = 0. The computations
for H1v follow the same pattern and H2v and H3v are easily shown to be
zero since all terms turn out to be zero. As a result we have H(θ)v = 0, so v
is an eigenvector corresponding to a zero eigenvalue.

8. Degeneracies

There are two types of first order degeneracies : Edge collapses and altitude
collapses. Both of these will cause one of more of the altitudes in a hinge to
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become zero. This will formally lead to division by zero in the computation
of both the gradient and the Hessian for the bending energy. For an edge
collapse it is easy to show that all the relevant terms have well-defined limit
values as the edge length goes to zero, so one could include this as a special
case. Unfortunately, an altitude collapse is not as easy to handle.

In theory the tensile forces should prevent the elements from ever degen-
erating, but in practice it that doesn’t quite work. As an example the St.
Venant-Kirchhoff constitutive model does not have a singularity for detF = 0
which means that a finite amount of energy can cause a triangle to degenerate.
Other constitutive models do have such a singularity, but they are exceedingly
ill-conditioned in the near-degenerate configuration.
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